Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster.

نویسندگان

  • Stéphanie Robin
  • Séverine Chambeyron
  • Alain Bucheton
  • Isabelle Busseau
چکیده

Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Both piRNA and siRNA Pathways Are Silencing Transcripts of the Suffix Element in the Drosophila melanogaster Germline and Somatic Cells

In the Drosophila melanogaster germline, the piRNA pathway silences retrotransposons as well as other transcribed repetitive elements. Suffix is an unusual short retroelement that was identified both as an actively transcribed repetitive element and also as an element at the 3' ends of the Drosophila non-LTR F element. The copies of suffix that are F element-independent are far more actively tr...

متن کامل

In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways

BACKGROUND In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector p...

متن کامل

MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes

Computational methods for genome-wide identification of mobile genetic elements (MGEs) have become increasingly necessary for both genome annotation and evolutionary studies. Non-long terminal repeat (non-LTR) retrotransposons are a class of MGEs that have been found in most eukaryotic genomes, sometimes in extremely high numbers. In this article, we present a computational tool, MGEScan-non-LT...

متن کامل

Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.

We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recom...

متن کامل

How selfish retrotransposons are silenced in Drosophila germline and somatic cells.

Transposable elements (TEs) are DNA elements found in the genomes of various organisms. TEs have been highly conserved during evolution, suggesting that they confer advantageous effects to their hosts. However, due to their ability to transpose into virtually any locus, TEs have the ability to generate deleterious mutations in the host genome. In response, a variety of different mechanisms have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 164 2  شماره 

صفحات  -

تاریخ انتشار 2003